Printable, Flexible, and Stretchable Forms of Ultrananocrystalline Diamond with Applications in Thermal Management
نویسندگان
چکیده
Thin-film diamond has many potential applications in electronics and optoelectronics, microelectromechanical systems (MEMS), wear-resistant coatings, thermal management, and other areas owing to its exceptional electronic, optical, mechanical, chemical/tribological, and thermal properties, respectively. However, challenges in the integration of thin-film diamond with other materials continue to limit its widespread use. Thin-film diamond is most commonly implemented in these systems by directly growing the material on the surfaces of device substrates, where it is used as uniform or lithographically patterned films. This approach places restrictions on the range of applications because all known growth techniques involve relatively high temperatures (>400 8C), vacuum or low pressures, and often other demanding conditions. Integrating thin-film diamond on low-temperature plastics, for example, is not possible. Large-area substrates are also not well-matched to the capabilities of existing deposition techniques, being particularly cost-ineffective when the required diamond coverage is
منابع مشابه
Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp<sup>2</sup>-on-sp<sup>3</sup> Technology
Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional SiO2/Si substrates reveal the breakdown current density on the order of 1 μA/ nm (i.e., 10 A/cm), which is ∼100× larger than the fundamental limit for the metals but still smaller than the maximum a...
متن کاملRapid thermal lysis of cells using silicon-diamond microcantilever heaters.
This paper presents the design and application of microcantilever heaters for biochemical applications. Thermal lysis of biological cells was demonstrated as a specific example. The microcantilever heaters, fabricated from selectively doped single crystal silicon, provide local resistive heating with highly uniform temperature distribution across the cantilevers. Very importantly, the microcant...
متن کاملHighly conductive, printable and stretchable composite films of carbon nanotubes and silver.
Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid compos...
متن کاملFully printable, strain-engineered electronic wrap for customizable soft electronics
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a f...
متن کاملNitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films
Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form s...
متن کامل